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The Laser Ablation Plasma Thruster

Subkilogram form of micro- and nanosat propulsion
Low-power thruster (15-100’s W)
Ablates either a polymer or exothermic fuel tape
Choice of fuel dictates performance of thruster

I Important governing physical parameter: Coupling coefficient (Cm)
I Cm [N/MW] measures effective thrust per megawatt of input laser

power.
I Polymer Cm’s are ≈100’s N/MW.
I Exothermic Cm’s are as high as 3,500 N/MW.

Polymer operation
I Cm ≈ 100 N/MW, Thrust ≈ 1µN, Isp ≈ 100s. [1]

Exothermic operation
I High-Isp mode: Cm ≈ 3,000N/MW, Ft ≈ 57mN, Isp ≈ 3,660s

(measured![1])
I Low-Isp mode: Cm ≈ 3,000N/MW, Ft ≈ 6.48N, Isp ≈ 116s

(measured![1])
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The Laser Ablation Plasma Thruster
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Modeling the Laser Ablation Plasma Thruster

Our goal is to model this thruster using an MHD code with
laser/plasma interactions.
We want to construct a model allowing us to:

I Test different polymer and exothermic propellants
I Evaluate the overall performance of the fuel selection
I Predict the overall coupling coefficient for the fuel chosen

Allows for:
Different geometry
Different laser conditions
Different propellant
Resolving transient behavior
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Modeling, cont.
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Summary of Laser Ablation Plasma Thruster Modeling
We have succeeded at modeling both polymer and exothermic
propellants.
We can reach laser energies of ≈10W.
Changes in geometry result in increased ablation pressure.
Experimentations in laser-supported detonation and inhibitor fuel
tapes.
Have achieved good agreement with experimental Cm
measurements.
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Improving Plasma Modeling

Another aspect of our modeling has been developing structured
and unstructured, implicit finite volume plasma solvers.
This work has focused on retaining the full Maxwell equations.
This allows us to retain electrodynamic behavior usually seen in
kinetic/particle-in-cell (PIC) simulations, which are not usually
retained in fluid simulations.
Particularly:

I We can resolve net charge densities and charge non-neutralities
I Can simulate electromagnetic wave propagation
I Can retain multiple species effects
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Improving Plasma Modeling – Telegrapher’s Equation
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Shortcomings of MHD

The Magnetohydrodynamic model:
applies well in high-conductivity plasma.
reduces everything to a single time-scale (fluid).
assumes quasineutrality of the plasma.
does not permit displacement current.
does not permit electromagnetic waves.
is intrinsically low-frequency
(does not permit multiple species effects).
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Potential Applications

Plasma space thrusters feature both high- and low-conductivity
regions (transition from high-conductivity plasma to vacuum).

High-conductivity
plasma

Low-conductivity
plasma (vacuum)

Both high- and low-conductivity regions can lead to ill-posed
numerical schemes.
Plasma actuators and other ‘electrohydrodynamic’ flows feature
important charge non-neutralities and multiple species effects.
Engineering applications in which electromagnetic wave
propagation is important (re-entry blackout communications) must
resolve these waves.
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Advanced Fluid Models

We are exploring advanced fluid models that retain the full
Maxwell equations to solve these problems:
A single-fluid plasma model with displacement current and Ohm’s
law,
A two-fluid plasma formulation
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Single-fluid Plasma Model

Retains Navier-Stokes equations for a single fluid
Retains full Maxwell equations for electrodynamics
Current is given by Ohm’s law
Navier-Stokes equations with Lorentz body force can be rewritten
in a strong conservative form:

Can resolve higher-frequency behavior and full electromagnetics,
may be able to resolve Langmuir oscillations
Is limited in explicit simulations to a timestep of ≈ ε0/σ

Implicit simulations can achieve very large timesteps
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Two-fluid Plasma Model

Retains a set of Navier-Stokes equations per species (usually ions
and electrons)
Retains full Maxwell equations for electrodynamics
Current is given by convective current, je = (e/m)%eu
Can resolve multiple species effects, Langmuir oscillations,
higher-frequency behavior and full electromagnetics
Is limited by the smallest of the light transit time, plasma frequency
and cyclotron frequency.
Can be very stiff in high-conductivity plasma.
Captures more essential physics, but at the cost of high
computational expense.
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Finite Volume Solver

To implement both of these plasma models, we have developed a
structured, multidimensional implicit finite volume plasma solver.
An unstructured version is under way.
Implements a dual-time implicit scheme, which allows for
preconditioning in the dual-timestep.
Current permits a flux splitting method, Roe approximate Riemann
solver method, and hybrid flux-split Roe method.
Currently works in both 1D and 2D.
We are validating the solver against multiple 1D and 2D tests.
We are testing it on both high and low conductivity (and mixed)
problems to demonstrate validity across full range of conductivity.
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Brio and Wu Shock Tube Problem

The Brio and Wu shock problem has become a classic MHD (and
two-fluid) benchmark problem
We solve the Brio and Wu shock problem in 2D.
Domain was one unit length long and ten unit lengths tall.
Initial conditions:
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Brio and Wu Shock Tube Problem
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Brio and Wu Shock Tube Problem
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Brio and Wu Shock Tube Problem
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Brio and Wu Shock Tube Problem
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Orszag-Tang MHD Vortex Problem

Tests MHD turbulence capabilities
We solve the problem in 2D.
Our boundary conditions differ from the usual periodic conditions
(simply not implemented yet).
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Orszag-Tang MHD Vortex Problem
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